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SOME STUDIES OF THE FLUCTUATIONS IN EMISSION FROM
THE EXHAUST GASES OF SMALL ROCKET ENGINES

F. C. Harshbarger
M. Dorian

INTRODUCTION

An experimental enalysis has been made of the frequency spectrum
of fluctuations in radiant emission from the exhaust gases of small
rocket motors near the nozzle exit. The purpose of this study was to
determine, 1f possible, an optimum chopping frequency for a device which
is being designed to measure very small optical absorption (approximately
14 ) in rocket flames. The principle of operation of this device has been
suggested by Oldenberg.! In brief, the apparatus consists of a collimated
beam of greybody radiation, chopped by a silvered sector disk in such a
manner as to produce two sinusoidally modulated beams, 180° out of phase.
One beam passes through the flame under study, and the other is used as
a reference. Emission from the flame is eliminated by a synchronous

amplifier tuned to the chopping frequency.

The effectiveness of this method of eliminating the radiation from
the flame is restricted by the presence of a-c components in the flame
enission which can be expected to exhibit roughly a l/f amplitude de-
pendency. Occasional peaks asscclated with resonant frequencies in the
system have been observed.2’3 The results of previous studies have indicated
that the amplitude of these fluctuations alsc varies with propellant
mixture ratioc and with wavelength for laboratory-scale engines.? There
have been some studies published in the classified literature on this
subject.5’® The present study has been designed to determine experi-
mentally the noise spectra for the several laboratory rocket motors
vhich will be employed in our absorption measurements. The results will
be used to select a chopping frequency for the absorption measurements.



II.

In the absence of any other conslderations, a very high chopping
rate would be selected because the emission is expected to exhibit a
l/f amplitude dependence. However, the useable chopping frequency range
is restricted by a number of considerations. Several rocket engines
vwith different chamber dimensions will be employed. Resonant frequencies
may be encountered in the 10- to 20-kc range under certain conditions.*
At higher frequencies, limitations are imposed by the time response of
such detectors as PbS. The work described in this report was restricted
to frequencies in the O- to 10-kc range.

EXPERIMENTAL APPARATUS

A block diagram of the experimental apparatus appears in Figure 1.
The rocket engines ranged in thrust from 10 to 160 1lb. Various filter-
detector combinations were employed, covering the wavelength region
from O.4 to 8 p. A 931A photomultiplier tube was employed for visible
radiation, lead sulfide and cooled gold-doped germanium for the infrared.
Detector outputs were amplified and recorded on magnetic tape.

Calibration of the detector-amplifier systems for frequency response
vwas made with a tungsten strip lamp, chopped sinusoidally at 24 ke,
The chopper motor was turned off, and amplitude versus frequency was
recorded as the chopper wheel decelerated. The frequency response of
the photo-multiplier system, as well as that of the germanium detector
was flat (less than 1 db down at 10 kc). The lead sulfide data required
correction prior to Fourier wave analysis, since the 10-kc frequency

response was down about 6 db,

The detectors were located radislly in a plane immediately adjacent
to the nozzle exit, with fields of view of approximately 1 cm® (Ex1it

diameters of the rocket engines varied from 0.9 to 3.7 cm.)

*Inherent in this statement is the assumption that there is a
correlation between the fluctuations in the chamber pressure and
emission at the nozzle exit. A number of investigators® have
demonstrated that thls correlation does exist between the chamber
pressure and chamber emission fluctuations. The estimate of
resonant frequencies which may be generated is based on simple
"organ-pipe" calculations.
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III.

The optical paths were purged with nitrogen when tests were made !n the
Hao and CO2 emission band wavelength regions.

Because of the high acoustic noise level in the test areas, all of the
electronics except a simple cathode follower for each detector were
located inside a blockhouse. The cathode followers utilized a 6021
triode, which has been found to be quite free of microphonics. The noise
level due to microphonics in the system was obtained by firing the rocket
engines with the detectors in position, but masked off to prevent any
signal from flame emission. A plot of amplitude versus frequency for a
typical noise check is shown in Figure 2A. Figure 2B is a similar plot
of a wow and flutter check of the playback-wave analyzer system. The
same amplitude scale is used in both figures. From these two figures, it
is apparent that the limiting noise was due to wow and flutter, and that
microphonic effects were neglible,

EXPERIMENTAL PROCEDURE

The rocket engines were mounted horizontally on stands outside the
blockhouse. The nozzles vwere contoured to provide nearly axial flow at
the nozzle exit and an exit pressure balanced with the ambient (sea level)
pressure, Typical run durations were from three to five minutes, during
which time the fuel flow rates, chamber pressure and fuel mixture ratio
were determined, and the amplifier gains were adjusted to provide
appropriate recorder input levels. Oscilloscopes were used for monitoring
the recorder input levels, To permit d-c recording, information was
frequency modulated, by using standard 70-kc modules, and then recorded
on magnetic tape. One-second samples were re-recorded on tape loops,
from which a plot of amplitude versus frequency was made, using a wave
analyzer with a bandwidth of 200 cps. The adequacy of the sampling
time was verified by comparing the amplitude versus frequency plots for
data teken at three different, but consecutive, l-sec time intervals.

The results, appearing in Figure 3, indicate that the sampling time was
sufficient,
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A measure of the amplitude of the fluctuations relative to the
average d-c level of emission was obtained. The d-c readout was
accomplished by means of oscillograph recordings of a reduced speed
playback. These data were taken just prior to engine shutdown (to
provide the signal level) to just after shutdown (to provide a zero
level).

RESULTS

The characteristic features of the fluctuations in emission were
about as expected. The total a-c component relative to average d-c level
wvas greatest in the visible rezion, with typical a-c to average d-c
ratioe as high as 100% for fuel-rich operating conditions. This high
value is probably attributable to the presence of small carbon particles
in the flame. At longer wavelengths, and in particular, in the 2.7p
water vapor region and L.3y carbon dioxide reglon, the molecular emission
exceeds that of the carbon, and the a-c to average d-c ratios are typically
less than 50% (Figure 4). As the mixture ratio approaches stoichiometric,
the a-c to average d-c values approach a minimum (5 to 10% at the longer

wavelengths) and then show an increase for fuel-lean operation.

Figures 5 through 9 i1llustrate the frequency dependence of the a-c
component of the flame emission. In these figures, the raw data have been
corrected for system frequency response and approximately for noise
caused by wow and flutter in the playback system, then smoothed and
normalized arbitrarily at 2 ke to facilitate camparison. Figure 5 is a
composite of photomultiplier date from a series of tests using the 160-1b
thrust engine. Figures 6 and 7 are similar presentations of lead sulfide
and gold-doped germanium data. In Figure 4, it appears that the frequency
spectrum is more reproducible at either fuel-lean or fuel-rich mixtures than
at near-stoichiometric conditions. This may be attributable, at least in
part, to the fact that at near-stoichiometric conditione the relative
amplitude of fluctuations is at a minimum, and the resultant decrease in
slgnal-to-noise is accompanied by a greater uncertainty in the data.

Figure 8 i1llustrates a comparison of photomultiplier data from the
three engines operating fuel-rich, and Figure 9 shows a similar comparison
of lead sulfide data.
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None of the three engines at either fuel-rich or stoichiometric mixture
ratios produced significant resonant peaks in the amplitude versus frequency
Plots at frequencies up to 10 kc. When the engines were operated fuel-lean,
however, strong oscillations at reproducible frequencies were observed.

For the 160-1b engine, this frequency was about 640 cps. This frequency
was probably assoclated with chugging (a coupling between the propellant
supply system and the combustion chamber conditions), since there are no
dimensions characteristic of the engine itself which could produce
oscillations in this low frequency range. At a mixture ratio of approx-
imately 5:1 a strong resonance appeared occasionally in the 160-1b engine,

and at 7:1 or more its occurrence was persistent.

To determine the extent to which this disturbance was propagated down-
stream in the exhaust plume, two lead sulfide cells were mounted in such a
fashion that one monitored the emission at the nozzle exit and the other
could be positioned at various stations downstream. In Figure 10, the
Fourier analysis of the fluctuations at the nozzle exit are compared with
simultaneocus recordings at several downstream positions (wave analyzer
band width was 5 cps). The peak amplitude diminishes with increasing
distance from the nozzle, and finally disappears at about a 20-diam distance.
From phase difference measurements, the propagation velocity of this
disturbance was found to be approximately 4500 ft/sec at the nozzle exit,
decreasing almost linearly to zero ft/s~c at 20-dlam downstream.” The
resonant frequency changed from 640 to 600 cps as the position of the
detector was moved from the nozzle exit to 20-diam downstream. The band-
width of the amplitude peak increased slightly as the detector was moved

away from the nozzle exit.

* By measuring the phase difference between the two detector

outputs, the average propagation velocity of this disturbance was
determined for several positions. Any two of these measurements
were sufficient to determine both the instantaneous velocity and
the average deceleration of the disturbance. The several values of
the average deceleration thus obtained agreed to within 3%, which
indicated that the deceleration was constant, and thus 1t was
possible to calculate the instantaneous velocity at the nozzle

exlt by extrapolation.

1
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Similar resonant peaks were observed at approximately 600 cps for
fuel-lean runs of the smaller engines, but the amplitude of the resonant

peak was small compared to the typical (1/f) noise at that frequency.

SUMMARY

With the exception of a narrow frequency range in the neighborhood
of 600 cycles, the frequency spectra of emission fluctuations to 10 ke
for the small engines studied appear to be quite similar. In view of
the (roughly) l/f nature of the amplitude distribution, the selection
of an optimum chopping frequency for sbsorption measurements can be

based upon mechanical and electronic considerations in the 1- to 10-kc

range.
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